Friday Worksheet ¹HNMR spectroscopy 1

Name:

BACKGROUND ON NMR:

1) How many signals are expected in the ¹HNMR spectrum of the following molecules? Draw the structure of each molecule.

Each hydrogen that is chemically different has its own signal The chemically different hydrogen atoms are shown in each diagram coloured. a) CH₃CH₂CH₂COO H Four signals

b) Methyl propanoate Three signals

c) Propan-2-ol

Three signals

- 2) Draw the ¹HNMR spectrum of each of the compounds below. Clearly show the signal splitting and the relative intensity of each signal.
 - a) CH₃CH₂OCH₂CH₃

4) Below is the ¹³CNMR for butan-2-ol

- a) How many chemically different carbon environments exist?
 4
- b) Why is there no signal splitting in ¹³CNMR but there is in ¹HNMR? The natural abundance of ¹³C is very low and so the chances of having two ¹³C atoms next to each other in a molecule are very low and so no splitting is seen in ¹³CNMR.
- c) Why ¹³C is used for analysis and not ¹²C, which is the more abundant isotope of carbon The ¹²C isotope is not magnetically active and therefore not detectable by NMR. Only nuclei with an odd number of nucleons can be detected in NMR.